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Abstract

In recent years, a number of fundamental problems associated with impedance spectroscopy techniques for testing electro-chemical
systems have come to light. This paper will briefly attempt to explain some of these difficulties and propose a possible solution.
© 2004 Published by Elsevier B.V.
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1. Introduction

There are numerous studies that link ohmic techniques to
battery state of health (SoH) analysis (Markle[1], Markle
[2], Albèr and Migliaro[3], Feder et al.[4], Damlund[5]).
Huet [6] gives an excellent overview of the current state of
impedance analysis used on electrochemical cells. In recent
years, a number of fundamental problems associated with
these current techniques have come to light. Most commer-
cial methods for impedance analysis described by the liter-
ature use only one particular frequency, usually kept below
100 Hz. The reason for this is an amalgamation of technical
difficulties, interpretation and cost. In order to analyze the
data, enough memory and computational ability is required
to facilitate some type of usable result. In most cases, only
the real component of the impedance is used. More advanced
units provide complex impedance data but this still only pro-
duces a comparative measure to the user. For example, the
user may track a particular battery over time and see how
the impedance degrades. This method may only realistically
be used with online monitoring systems. Another format is
to normalize the impedance data and utilize a user defined
multiplier in order to correlate impedance with values such
as cold cranking amps (CCA).

An obvious problem is if only one frequency is used,
which shall it be? To answer this question, the defining ar-
guments will depend upon the equipment available, battery
type, and the sort of measurement required such as state
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of health or state of charge (SoC). The literature suggests
that battery capacity may be correlated to ohmic resistance
(Hawkins and Barling[7]). This is described as the point
where the impedance is at a minimum, which occurs when
the phase angle between the voltage and current waveforms
is zero. Unfortunately, the frequency that will provide this
minimum phase changes with capacity. This means that
some battery test equipment will perform better on one bat-
tery then another (Hawkins and Barling[7]).

One method to circumvent the frequency choice problem
is to employ an electrochemical model equivalent of the
cell. One that is commonly used is Randles model given in
Fig. 1:

Using this model, the system may infer the impedance
spectrum, thereby estimating the minimum impedance with-
out directly exciting the battery at the required frequency.
Without making estimates, different excitation frequencies
are required since this is a multivariable problem. However,
certain assumptions may be made to simplify the calculation
such that it may be performed on common�-controllers.
The difficulty arises in the model itself. For example, what
if we add an inductor or another RC network? There are
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Fig. 1. Randles model of a lead-acid battery.
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Fig. 2. System topology.
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Fig. 3. Data fusion algorithm.

an infinite number of possible model combinations so how
does one choose which is the best candidate?

2. The Spectro equipment

Spectro, being developed by Cadex Electronics Inc., at-
tempts to rectify these problems considered above in one
unit. Fig. 2 depicts a system overview of the technique.

The first unit is a signal control and data acquisition block.
A full frequency spectrum (20–2000 Hz) rather than just one
particular frequency is employed. This overcomes a number
of difficulties listed above. Moreover, it provides the ability
to measure both the SoC and various other battery parame-
ters. An added advantage is the reliability of readings is in-
creased since we can assume a smooth transition from one
frequency to the next.

The battery is an extremely complex system involving
coupled non-linear electrochemical reactions and trans-
port processes (Liaw and Bethune[8], MacDonald [9]).
Non-linearity will in general produce a set of harmonic

frequencies in response to a perturbation of a fundamental
frequency (MacDonald[9]).

If, however, the battery was excited with a minimum
amount of perturbation, a pseudo-linear regime may be ap-
proximated. The system regulates the excitation voltage to
a level of 10 mV across each cell ensuring linear operation.

To deal with the data collection on such a scale, a digi-
tal signal processor is used to process the data off line for
each frequency to produce a magnitude and an equivalent
phase between the input and output waveforms. We also
take advantage of using real time digital filters to increase
repeatability of readings and remove any unwanted signals
in electromagnetically noisy environments.

Even if data collection is performed on a number of sepa-
rate frequencies, the problem of how to analyze the result is
still difficult to answer. The system uses a library of differ-
ent electrochemical models1 to fit the data. The frequency
range is automatically adjusted to provide the most optimum

1 At the time of writing, 14 models are currently in the library.
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fit. If a particular model fails to attain a certain quality of
fit, the model is rejected. In essence, each electrochemical
model tends to describe a portion of the impedance spectrum
quite well. By incorporating a number of models, we de-
scribe the entire spectrum with reasonable accuracy, which
is beneficial in increasing repeatability and reliability of the
calculated readings.

Once the fitting procedure is complete, the algorithm de-
termines which elements of a particular model are corre-
lated to the parameter the user wishes to estimate. This is
accomplished by using a secondary library. For example, in
Fig. 3, if the user wishes to estimate the CCA of a battery,
then element R1 of model 1, element R2, C1 of model 2,
etc. may be used. These values are processed in a data fu-
sion algorithm and the estimated result is reported to the
user.

3. Results

The current test results using this method are quite promis-
ing. To date over 100 standard automotive batteries in var-
ious conditions have been evaluated. Before being tested
with the Spectro technique, the CCA and reserve capacity
of all batteries was established using SAE J537. Results are
shown inFig. 4.
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Fig. 4. Cumulative test results of 50 different batteries of varies models and state of health levels.
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Fig. 5. Optimized output using learning.

The diamonds inFig. 4represent the true CCA of the test
battery. The CCA was determined using procedures outlined
in SAE J537 sec 3.7. The squares indicate Spectro CCA
estimates using 14 separate electrochemical models. The
accuracy with respect to the measured CCA is±80 A. The
data fusion matrix is static and has not been optimized for
an individual battery model. This data purely represents the
output with a known indicated CCA of the battery provided
by the user.

Most users are primarily interested in battery failure de-
tection. A failure in this case is defined as a CCA rating
less than 80% of that indicated by the manufacturer. For the
current population, Spectro was able to identify 83% of all
failed batteries. This is approximately a three-fold increase
to competitive commercial units.

When the data fusion matrix is optimized for a particular
battery model, a sufficiently higher degree of accuracy may
be established. Indeed, such a function has been incorporated
into the device. The batteries contained inFig. 5 are of one
model type but at varying SoH levels.

The error with respect to CCA in this case is (−10 ±
30) A. Learning was performed on one healthy battery.
It appears with proper initial calibration fairly reasonable
CCA estimates may be obtained. We have also found that
the results are relatively stable between 40 and 100% SoC
levels.
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The method supplies the user with a result that is sim-
ple and understandable in a minimum amount of time. The
algorithm may be easily upgraded to include new electro-
chemical models for other battery types or applications such
as fuel cells. The converging results provided by a number
of electrochemical models may potentially provide a robust
tool in establishing reliable CCA and SoC estimates. Fur-
ther work is ongoing to also provide estimates for battery
reserve capacity.
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